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In this paper, we discuss the application of spectral-based methods to simulation of particle-laden turbu-
lent flows. The primary focus of the article is on the past and ongoing works by the authors. The particles
are tracked in Lagrangian framework, while direct numerical simulation (DNS) or large-eddy simulation
(LES) is used to describe the carrier-phase flow field. Two different spectral methods are considered,
namely Fourier pseudo-spectral method and Chebyshev multidomain spectral method. The pseudo-spec-
tral method is used for the simulation of homogeneous turbulence. DNS of both incompressible and com-
pressible flows with one- and two-way couplings are reported. For LES of particle-laden flows, two new
models, developed by the authors, account for the effect of sub-grid fluctuations on the dispersed phase.
The Chebyshev multidomain method is employed for the works on inhomogeneous flows. A number of
canonical flows are discussed, including flow past a square cylinder, channel flow and flow over back-
ward-facing step. Ongoing research on particle-laden LES of inhomogeneous flows is briefly reported.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Computational analysis of particle-laden turbulent flows has
been applied to problems ranging from fundamental physics
(Crowe et al., 1998) to industrial applications (Tsuji, 1982; Gidas-
pow, 1994). The predominant approach for computation of turbu-
lent flows laden with many particles has been the Eulerian–
Lagrangian (EL) method where each particle is traced in its
Lagrangian frame, i.e. the frame moving with the particle. The
treatment of particles as volumeless mathematical points in EL
economizes the tracing of many particles. This treatment is often
referred to as the ‘‘point-particle” approach to distinguish it from
finite-size particle approach where the finite sizes or better said
volumes of particles are accounted for in the simulation of carrier
phase. The point-particle EL has been the basis for most simula-
tions of particle-laden turbulent flows. With a point-particle
assumption, simulation of large number of particles, typical of
any realistic industrial flow is feasible.

Despite significant advances in EL methods (Maxey and Patel,
1997; Prosperetti and Oguz, 2001; Takagi et al., 2003), the point-
particle EL method is and will be, in our opinion, for quite some
time the only feasible method that computes industrial scale par-
ticle-laden engineering flows with reasonable accuracy. Neverthe-
ll rights reserved.
less, it should be understood that point-particle EL has its
limitations. This model omits flow details around particles that
are typically taken spherical. Particle wake effects on the carrier
flow cannot be modeled. For the influence of the particle on the
carrier flow to be accurate, the particle size must be smaller than
the smallest turbulent flow scale, i.e. the Kolmogorov scale. This
limits the physical representation of real flows with particle sizes
larger than the Kolmogorov scale. Furthermore, the point-particle
EL method should also be considered a statistical approach, that
is suited to model the averaged influence of many particles on
the flow and vice versa, rather the influence of individual particles.
Despite these limitations, many flows can be modeled by EL.

The authors of this paper have in the last decade made efforts to
develop and use EL type methods for analysis of realistic particle-
laden turbulent flows through the point-particle approach. We
have done so in a structured manner starting from a one-way cou-
pled simulation in isotropic turbulence up to currently two-way
coupled large-eddy simulation (LES) in complex geometries. We
have been particularly motivated to simulate droplet-laden flows
in liquid-fuel or spray combustors. In this paper, we will review
our efforts in the development of a computational tool based on
spectral carrier phase solvers for simulation of realistic particle-la-
den flows. To enable computation of realistic flows, we have firstly
focused on the development of point-particle EL methods that en-
able computation of particle-laden flow in complex geometry and
secondly we have focused on the modeling of small scales of the
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flow to reduce the required degrees of freedom in a simulation,
thus increasing the computational efficiency and allowing for lar-
ger scale simulations of realistic flows.

This article primarily reviews the work conducted by the
authors. We will discuss, where relevant, the works of others but
do not claim a comprehensive review on point-particle EL litera-
ture. In particular, we will review the development of point-parti-
cle EL based on high-order spectral methods for computation of the
carrier flow with direct numerical simulation (DNS) and LES in
complex geometry and the development of LES subgrid models
that account for the effect of the subgrid scales on the particle mo-
tion. We will give a brief background on these two topics in the
two sub-sections below, before we review our works in more detail
in the remainder of the paper. In Section 2, we describe the govern-
ing equations for the carrier and dispersed phases. In Section 3, we
report our works on DNS and LES of particle-laden homogeneous
turbulence using Fourier spectral methods. In Section 4, we discuss
particle-laden inhomogeneous flows, where a spectral multido-
main method is used for simulation of the carrier phase. Again,
both DNS and LES treatments of the carrier phase are considered.
Finally, we draw general conclusions on the use of spectral-based
methods for simulation of particle-laden turbulent flows and dis-
cuss future directions.

1.1. High-order spectral methods

The consensus in the community is that high-order methods are
required for simulation of turbulent flows that are characterized by
a large range of scales. High-order methods have been the norm for
these simulations because of their low diffusion and dispersion er-
rors. Both errors affect accuracy of a simulation and both are signif-
icantly smaller in high-order schemes than in low-order schemes.
High-order schemes require far fewer grid points to resolve the
smallest scales than low-order methods do (Jacobs et al., 2004b).
This reduced resolution requirement is typically referred to as
high-order resolution. When we refer to dispersion errors, we mean
the misrepresentation of waves (e.g. phase errors) by a numerical
scheme when marching in time (Karniadakis and Sherwin, 2005).
The turbulent spectrum in wave space is directly affected by these
errors. When dispersion errors are small, long time integration in
turbulent flow simulations is accurate. Dispersion errors are clo-
sely connected to the spatial discretization. Fourier spectral meth-
ods are well known to have zero dispersion errors. General higher
order methods have virtually no dispersion and hence are charac-
terized long-time accurate.

For DNS of homogeneous particle-laden turbulence, it is natural
to use the Fourier spectral method (Canuto et al., 1987). In the Fou-
rier spectral method, the dependent variables are approximated in
a hexahedral domain by truncated discrete Fourier series that ide-
ally represent the homogeneous flow variables and inherently deal
with periodic boundary conditions. Typically, the Fourier series
approximations are substituted into the partial differential equa-
tion and are consequently weighted by a test function according
to the generic method of weighted residuals. This approach yields
an ordinary differential equation system that is easily updated
with a temporal integration. Fourier spectral methods rely on the
Fourier transformations of the flow variables from physical space
to spectral space. The transformations may be performed in a com-
putationally efficient manner using Fast Fourier Transform (FFT).
Within the broad class of Fourier spectral methods, we have exclu-
sively used the pseudo-spectral method for our homogeneous par-
ticle-laden turbulent flow simulations. In the pseudo-spectral
method, the non-linear terms are treated in physical space. Treat-
ment in physical space is particularly useful for the particle tracing
and determination of coupling source terms between the carrier
and particle phases that are also carried out in physical space.
A major drawback of the spectral method described above is
that the approximation of the equations based on Fourier series
dictates a simple geometry, which in practice means a cube (in
3D) or a rectangle (in 2D). Another restriction is that parallelization
of Fourier-spectral methods can only be performed on the FFT rou-
tines limiting the general parallelization efficiency. It is clear that a
scheme other than the traditional Fourier spectral method has to
be considered for large-scale flow simulation in complex geome-
tries. Several low-order alternatives are of course available, such
as finite volume, finite element and finite difference methods,
but as mentioned above they are not as suitable for DNS of turbu-
lent flows as high-order methods. Essentially, two suitable high-or-
der schemes have come forth, including ‘‘compact finite difference
(FD) schemes with spectral-like resolution” developed by Lele
(1992), and spectral/hp element (SE) type schemes introduced by
Patera (1984).

Finite difference (FD) is relatively easy to implement and pro-
gram on structured grids. The application of boundary conditions
in high-order FD, however, is complicated by the overlapping nat-
ure of the stencil. The use of high-order FD (Zhang et al., 2006) re-
quires large multi-block structured grid that is not trivial to
implement. First, generation of grids of high-quality, essential to
preserve the favorable characteristics of the method, with multi-
block meshing is labor intensive and not always consistent when
establishing grid convergence. Second, parallel codes are not opti-
mal, since the overlap in FD stencil leads to a relatively large
amount of data that needs to be exchanged between blocks on dif-
ferent processors. This reduces the applicability and efficiency of
FD codes.

In SE, the computational domain is divided into elements that
are non-overlapping, providing a flexible meshing, easy boundary
condition implementation, and highly parallel method. In each ele-
ment the solution values are approximated by orthogonal (mostly
Chebyshev or Legendre) polynomials that are also typically used in
single domain spectral simulations of turbulent flows (Moin and
Kim, 1982; Ounis et al., 1991; Pedinotti et al., 1992; Chen et al.,
1995; Rouson et al., 1997; Narayan et al., 2003) SE is exponentially
convergent with increasing the degree of the polynomial approxi-
mation without widening the discretization stencil and the overlap
like in FD. Therefore, in addition to mesh flexibility, SE achieves
high-order resolution. The grid convergence study is also simple
and consistent and does not require changing the grid’s topology.

Within the broad class of spectral element methods, one should
distinguish between continuous and discontinuous SE. Both meth-
ods converge exponentially and are characterized by the high-or-
der resolution and long-time accuracy discussed above, but
establishes connectivity between elements differently. In the con-
tinuous SE (Karniadakis and Sherwin, 1999; Deville et al., 2002)
connectivity between the elements is established by global assem-
bly of local mass and stiffness matrices into one large matrix–vec-
tor formulation similar to finite element methods. This assembly is
rather expensive and not very convenient for parallel implementa-
tion. In discontinuous spectral element methods (Hesthaven and
Warburton, 2008) connectivity between elements is achieved by
forcing the convective and diffusive fluxes to be continuous at
the local element boundary only, while the solution is allowed to
be discontinuous over element boundaries. When a computation
is underresolved (i.e. too few grid points are used to resolve the
Kolmogorov scale) this discontinuity is clearly visible in visualiza-
tions of the solution, but much less so when the solution is re-
solved. In other methods like continuous spectral element and
even more so in FD, visualizations are much smoother. Smoothness
in the solution, however, should not be confused with accuracy, a
wrongful perception by many that are not familiar with the discon-
tinuous formulation. In FD an underresolved computation is usu-
ally smooth, but clearly inaccurate. The discontinuous method is
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local. In summary, discontinuous SE combines all the desired fea-
tures for high-fidelity DNS, including,

� high order accuracy, requiring few degrees of freedom to resolve
the smallest scale;

� small dispersion error and long time accuracy;
� flexible meshing for complex geometries;
� high parallelization capability;
� ease of implementation.

Compared to FD, SE is a relatively young method. Since its
inception in the early 80s (Patera, 1984) much research has fo-
cused on establishing basic analysis and development. In recent
years, DNS with the method has gained popularity for its favorable
properties as described above.

1.2. Large-eddy simulations

Large-eddy simulation has proven to be a viable technique for
the computation of turbulent flows with large coherent structures
in complex flow applications. LES is more economical and less
accurate than DNS while less economical and more accurate than
Reynolds-averaged Navier–Stokes (RANS) method. An accurate
description of the Eulerian flow field with DNS enhances the accu-
racy of prediction of the dispersed phase. However, DNS requires
excessive computational cost to resolve the turbulence scale range
which increases with the increase of geometric complexity and
Reynolds number. Therefore, one may say that DNS of particle-la-
den flows are limited to even lower Reynolds numbers compared
to DNS of single-phase flows. In RANS, on the other hand, no at-
tempt is made to resolve any of the turbulent motion, rather the
net effect of all the scales on the mean flow is modeled. While this
reduces computational cost and makes RANS feasible for complex
engineering applications, it prevents the method from adequately
capturing the true dynamics of the flow. For particle-laden flows,
in addition to fluid turbulence, models for particle dispersion due
to turbulence are required. LES bridges the gap between DNS and
RANS and efficiently computes flows in moderately complex
geometries at mid range to high Reynolds numbers found in many
real applications. It should be noted that performing LES of practi-
cal flows at high Reynolds numbers is currently feasible for free
shear flows (Pope, 2004) LES of wall-bounded flows at high Rey-
nolds numbers become inordinately expensive because of the high
resolution requirement near the wall. Simulations using hybrid
LES-RANS models, which appear to be more accurate than purely
RANS models for wall-bounded applications, are much more
affordable with the current computational resources.

In LES, the large scales, which are anisotropic and sensitive to
boundary conditions are directly computed, while the small scales
that are more isotropic and universal are modeled. Therefore, in
general LES models are less sophisticated and mathematically in-
volved in comparison to RANS models. Moreover, modeling of
the small scales as opposed to directly representing them reduces
the computational cost in comparison to a DNS computation. Be-
cause of simulation of large-scale dynamics in LES, a more accurate
accounting of particle–turbulence interaction than RANS exists for
LES. However, there remain the major challenges of modeling the
effects of turbulence sub-grid scales on particles as well as those
of particles on large scales which are directly represented in LES.
These effects assume importance when a substantial energy re-
sides in the sub-grid scales and/or when particle time constants
are smaller than the sub-grid time scales.

The subject of modeling of subgrid-scale effects on particles in
the LES of particle-laden turbulent flows through point-particle
EL method has recently started receiving much attention. These ef-
fects have been completely neglected in most of LES works, and
particle equations have been solved using filtered quantities in-
stead of the needed instantaneous quantities. Armenio et al.
(1999) have been probably the first investigators who studied
these effects in turbulent channel flows via a priori test. As could
be expected, they show that the neglect of these effects on particles
is more critical for particles with smaller time scales and/or when
there is a larger amount of subgrid-scale energy. Wang and Squires
(1996) proposed a stochastic model based on subgrid-scale eddy
and particle interaction to account for these effects. Other pro-
posed models will be discussed in the next section along with spe-
cial attention given to the mathematical discussion of our models
in this regard.

Here, we would like to mention that conducting a priori and a
posteriori tests for LES models, as they are commonly practiced
for single-phase flows through comparing the LES results against
DNS results, are done for particle-laden turbulent flows as well.
For instance, to verify the models proposed to account for subgrid
scale effects on particles, we have used DNS results to conduct ver-
ification through a priori and a posteriori tests. We have carried out
these tests in homogeneous turbulence, which will be discussed in
Section 3, and one of our future goals is to test these models in
inhomogeneous cases through conducting both LES and DNS.

2. Governing equations

2.1. Carrier phase

Unless otherwise stated in this work, the carrier phase is mod-
eled as compressible and viscous fluid. The governing equations for
the carrier phase flow are the conservation statements for mass,
momentum and energy. They are presented in non-dimensional,
conservative form with Cartesian tensor notation,

oq
ot
þ oðqujÞ

oxj
¼ fm; ð1Þ

oðquiÞ
ot

þ oðquiuj þ pdijÞ
oxj

¼ orij

oxj
þ fui

; ð2Þ

oðqeÞ
ot
þ o½ðqeþ pÞuj�

oxj
¼ �

oqj

oxj
þ oðrijuiÞ

oxj
þ fe; ð3Þ

where q; ui; p, and qe are the density, velocity in the ith coordinate
direction, thermodynamic pressure, and total energy per unit vol-
ume. The total energy, viscous stress tensor, rij, and heat flux vec-
tor, qj, are, respectively, given as

qe ¼ p
c� 1

þ 1
2
qukuk; ð4Þ

rij ¼
l

Ref

oui

oxj
þ ouj

oxi
� 2

3
ouk

oxk
dij

� �
; ð5Þ

qj ¼ �
l

ðc� 1ÞRef Prf M
2
f

oT
oxj

: ð6Þ

The source/sink terms fm; f ui
, and fe appearing in the governing

equations represent the integrated effects of the dispersed phase
mass, momentum and energy exchange with the carrier phase.
The reference Reynolds number Ref is based on the reference den-
sity q�f , velocity U�f , length L�f , and molecular viscosity l�f and is given
by Ref ¼ q�f U�f L�f =l�f . Prf ¼ l�f cp=k� is the reference Prandtl number.
The superscript * denotes dimensional quantities. c is the ratio of
the specific heat capacities, Cp=Cv . The above equation set is closed
by the equation of state,

p ¼ qT

cM2
f

: ð7Þ
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Here, Mf is defined as Mf ¼ U�f =c�f , where c�f is the reference speed of
sound defined by c�f ¼

ffiffiffiffiffiffiffiffiffiffiffi
cRT�f

q
, with T�f denoting the reference tem-

perature. Therefore, by definition Mf is the reference Mach number,
which is taken as 1 implying that our reference velocity is the same
as the reference speed of sound. The flow Mach number, which does
not appear explicitly in the non-dimensional equations is defined
as, M ¼ U�f =c�, where c� now is given by, c� ¼

ffiffiffiffiffiffiffiffiffiffiffi
cRT�

p
. With Mf set

to unity, M essentially becomes the reciprocal of the non-dimen-
sional sound velocity. Moreover, from the above definitions, M
(which is a local quantity in the flow) is related to the local non-
dimensional temperature T�=T�f . In the simulations for wall
bounded turbulent flows, presented later in the paper, the ‘‘free-
stream” M, based on the non-dimensional temperature at the wall,
is varied to obtain results at different Mach numbers.

2.1.1. LES formulation
In LES, the governing equations for the carrier phase are the fil-

tered compressible Navier–Stokes equations. By applying a spatial
low-pass (in frequency domain) convolution filter to the Navier–
Stokes equations, the turbulence scales are separated. The filter
in physical space is represented by the following convolution
product:

f ðx; tÞ ¼
Z

X
f ðx0; tÞGðx� x0Þdx0; ð8Þ

where G is the filter kernel and X represents the flow domain. We
apply the Favre, density weighted filtering operation (Erlebacher
et al., 1992), typical for LES of compressible turbulent flow,

ef ¼ qf
q
; ð9Þ

where overbar denotes the filtering operation. Applying this filter
yields the following filtered conservation equations,

o�q
ot
þ oðqeujÞ

oxj
¼ 0; ð10Þ

oðqeuiÞ
ot

þ oðqeuieuj þ pdijÞ
oxj

¼ oerij

oxj
�

ossgs
ij

oxj
þ oðrij � er ijÞ

oxj
; ð11Þ

oðqeÞ
ot
þ o½ðqeþ pÞeuj�

oxj
¼ � oeqj

oxj
þ oðerijeuiÞ

oxj
� 1
ðc� 1ÞM2

f

oqsgs
j

oxj

þ oðqj � eqjÞ
oxj

þ oð~uj½rjk � erjk�Þ
oxk

þ 1
2

� o

oxj
�qð gukukuj � ~uk~uk~uj � ssgs

kk
~ujÞ

� �
: ð12Þ

The filtering leads to several terms, in Eqs. (11) and (12), that re-
quire closure. ssgs

ij is the sub-grid scale stress tensor and qsgs
j is the

sub-grid turbulent heat flux. These terms physically represent the
effect of the unresolved (sub-grid) scales on the resolved scales.
The second unclosed term in the filtered momentum Eq. (11) is
ðrij � erijÞ, which results from Favre filtering of the viscous stresses.
The filtered energy equation has three more unclosed terms in addi-

tion to the sub-grid heat flux: the term oðqj�eqjÞ
oxj

which results from

Favre filtering of the diffusive heat flux; the term oð~uj ½rjk�er jk �Þ
oxk

which
is analogous to the sub-grid scale viscous dissipation; and finally
the divergence of turbulent diffusion, 1

2
o

oxj
½�qð gukukuj�

~uk~uk~uj � ssgs
kk

~ujÞ�.
It should be pointed out that the filtered equations described

above are accurate for a uniform filter kernel G (Eq. (8)). Applying
a non-uniform filter function to the Navier–Stokes equation leads
to additional terms in the filtered equations than those described
here. Higher order correction is required to account for the addi-
tional terms, which raises the order of the differential equations
and introduces a need for additional boundary conditions (Ghosal
and Moin, 1995). This is a classical issue in large-eddy simulation
of inhomogeneous flows where non-uniform grid and/or non-com-
mutative filtering is typically used, and is a topic of current re-
search. However, the magnitude of these additional terms is
small when grid non-uniformity is not significant. We have started
to address this issue in our recent work (Sengupta et al., in press)
on development of LES methodology using spectral multidomain
method.

The unclosed terms in the filtered equations require modeling.
The term ðrij � erijÞ is usually neglected (Vreman et al., 1995,
1997). In spectral element based simulations (Sengupta et al., in
press) the sub-grid term ssgs

ij ¼ qðguiuj � euieujÞ is modeled using
the modification of the Germano model (Germano et al., 1991)
for compressible flows (Moin et al., 1991) The expression for ssgs

ij

is accordingly given as

ssgs
ij ¼ �2CsM

2qjeSj eSij �
1
3
eSmmdij

� �
þ 1

3
ssgs

kk dij: ð13Þ

In compressible flows, the trace of the sub-grid stress tensor ssgs
kk

cannot be included in the modified pressure, and therefore has to
be modeled independently. Various models of ssgs

kk have been pro-
posed (see Yoshizawa, 1986; Erlebacher et al., 1992). However, pre-
vious studies by Squires (1991) and Vreman et al. (1994) have
demonstrated that there is no difference in the LES results at low
Mach number when ssgs

kk is neglected and in certain cases (see Vre-
man et al., 1994) the SGS model that neglects ssgs

kk is more stable.
Therefore, in LES of low Mach number flow, neglecting the trace
of sub-grid stress tensor does not introduce large errors and is often
beneficial towards numerical stability. The dynamic procedure
gives a local time-dependent estimate of CsM

2, which is updated
at each time iteration. It is worthwhile to note that the dynamic
procedure computes the Smagorinsky length scale CsM

2 directly
without the need to specify the grid filter width M. This is advanta-
geous in the context of spectral element method, where it is diffi-
cult to provide a general expression for the filter width M.

The sub-grid term

qsgs
j ¼ �q gTuj � eT euj

� �
ð14Þ

is usually modeled using the eddy-diffusivity hypothesis and a tur-
bulent Prandtl number (Moin et al., 1991). The modeled expression
is,

qsgs
j ¼

qCsM
2jeSj

Prt

oeT
oxj

: ð15Þ

The turbulent Prandtl number Prt is evaluated using a dynamic pro-
cedure analogous to the one used for computing the sub-grid vis-
cosity. A priori analysis of the magnitude of various terms in the
filtered energy equation by Vreman et al. (1995) has shown that
the fourth and fifth terms on the right-hand side of Eq. (12) are
small compared to the sub-grid heat flux vector and can be ne-
glected, especially at low and moderate Mach numbers. Finally,
the last term in the filtered energy equation (12) is similar to turbu-
lent diffusion of sub-grid scale kinetic energy and its contribution is
again small compared to other sub-grid terms (see Santhanam et al.,
2003).

The dynamic procedure requires the definition of an explicit,
low pass filter for the test filtering operation. Spectral filtering
can be constructed using either discrete polynomial transform
(DPT) or interpolant-projection (see Blackburn and Schmidt,
2003) over each element. DPT filtering can be conveniently applied
for methods with modal basis. For methods with nodal basis, the
solution has to be first transformed to modal basis before the
DPT filter can be applied. DPT filtering has been used in the discon-
tinuous Galerkin LES methodology developed by Sengupta et al.
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(2007). Projection filtering on the other hand can be constructed
directly on the nodal basis. Since it does not require an extra trans-
formation, interpolant-projection filtering is more efficient than
DPT for methods with nodal basis. This kind of filtering was intro-
duced for a spectral multidomain LES method in Sengupta et al. (in
press).

2.2. Dispersed phase

The non-dimensional Lagrangian equations governing the posi-
tion yi, velocity v i, and temperature Tp of each spherical particle, of
radius ap, mass mp, and specific heat coefficient cp, in the carrier
flow field can be written as

dyi

dt
¼ v i; ð16Þ

mp
dv i

dt
¼ Fi; ð17Þ

mpcp
dTp

dt
¼ Q ; ð18Þ

where Fi denotes the summation of all the forces acting on the par-
ticle and Q is the net rate of heat transfer to the particle. Eq. (18) is
written by assuming that the time scale of thermal conduction in-
side the particle is much shorter than the time scale of thermal con-
vection outside, i.e. for small particle Biot numbers. For such a
particle, temperature variation inside the particle can be neglected
and thus the particle temperature Tp can be considered uniform.

The problem of predicting the forces on a particle moving in a
viscous fluid has been studied for more than 150 years since Stokes
first obtained, in the year 1851, the drag force on a sphere in creep-
ing flow condition. Over the years different equations have been
proposed and used. Historical background and a detail account
on the relevant works are available in review articles by Michae-
lides (1997), Michaelides and Feng (1996) and Gouesbet and Berle-
mont (1999). Here we describe the equations which have been
used in our work. For a more comprehensive description the reader
is referred to the review by Mashayek and Pandya (2003).

Oseen (1927) proposed an equation for particle motion in shear
flows. The equation commonly known as the BBO equation is pre-
sented in its non-dimensional form,

dv i

dt
¼ CD

St
ðui � v iÞ þ

0:2CH

ð�StÞ1=2

Z t

t0

dðui � v iÞdsffiffiffiffiffiffiffiffiffiffiffi
t � s
p dsþ CA

1
�

� dðui � v iÞ
dt

þ 1
�

DðuiÞ
Dt
þ 0:727

ð�Stj~XjÞ1=2 ðui � v iÞ � ~Xf : ð19Þ

The first term represents the Stokesian drag based on particle slip
velocity; the second term is the Basset history force, resulting from
the temporal development of the particle wake and is important
when the time scales of fluid acceleration are on the order of con-
vection over particle surface; the third term is the added mass
force; the fourth term is the result of acceleration of the local fluid
element also referred to as the stress-gradient effect; finally, the last
term denotes the Saffman lift force. ~Xf is the fluid vorticity at the
particle location. The coefficients CH and CA appearing in the above
equation are given as,

CH ¼ 2:88þ 3:12

ð1þ AcÞ3
; ð20Þ

and

CA ¼ 1:05� 0:066

A2
c þ 0:12

; ð21Þ

where Ac is the relative acceleration factor, given by

Ac ¼
j~u�~vj2=dp

jdð~u�~vÞ=dtj : ð22Þ
In Eq. (19), � is the ratio of particle to fluid densities,

� ¼
qp

qf
; ð23Þ

and the Stokes number, St, is defined as the ratio of the particle re-
sponse time, tp, to the characteristic flow time, tf ,

St ¼ tp

tf
¼

q�pd�2p U�f
18l�L�f

¼
qdd2

pRef

18
: ð24Þ

The drag coefficient CD is given by,

CD ¼ 1þ 0:15Re0:687
p : ð25Þ

Michaelides and Feng (1994, 1996) derived an expression for Q (see
Eq. (18)), in an unsteady flow and temperature field for a rigid
sphere with high thermal conductivity and at low Peclet number.
A simplified form of their equation is generally used in practical
simulations. Here, only the convective heat transfer from the fluid
phase to the particle is accounted for, while the effects of curvature,
added mass and history force are neglected. This simplified form is
known as the modified Michaelides–Feng (MMF) equation, whose
non-dimensional form is presented below,

dTp

dt
¼ Nu

3PrStr
ðTf � TpÞ; ð26Þ

where Tf is the temperature of the carrier fluid at the location of the
particle. r ¼ Cd=Cp with Cd and Cp denoting the specific heat
capacities of the dispersed and the carrier phase, respectively.
The Nusselt number Nu for the spherical particle is given by
Ranz–Marshall correlation (Ranz and Marshall, 1952) and is written
as

Nu ¼ 2þ 0:6Re0:5
p Pr0:33 8 Rep < 5� 104; ð27Þ

where Pr is the Prandtl number for the carrier fluid phase. The par-
ticle Reynolds number, Rep is given by,

Rep ¼ Ref dpj~u�~vj: ð28Þ
2.2.1. Modeling subgrid scale effects on dispersed phase
In the past few years, models have been proposed to account for

the contribution of subgrid scales on particles. These models are
basically formulated based on either a deterministic approach or
stochastic modeling of subgrid scales.

In the deterministic approach, the instantaneous velocities are
reconstructed for the use in particle equations through defiltering
(Shotorban, 2005; Kuerten and Verman, 2005; Shotorban and
Mashayek, 2005a; Kuerten, 2006; Shotorban et al., 2007). Shotor-
ban and co-workers (Shotorban, 2005; Shotorban and Mashayek,
2005a; Shotorban et al., 2007) proposed to use the Approximate
Deconvolution (AD) (Stolz et al., 2001) for defiltering. Deconvolu-
tion is a mathematical method to approximately reconstruct the
instantaneous velocity through consecutively applying the filtering
operation on the filtered velocities. The consecutive application of
the filtering operator is a result of a series expansion for deconvo-
lution. It should be borne in mind that filtering itself is a convolu-
tion product of the instantaneous velocity and the filter kernel.
Kuerten and Verman (2005) employed a defiltering technique in
which the filtering inversion is carried out in the Fourier
space for the streamwise and spanwise directions while the
inversion is approximated by a Taylor series for the cross-stream
direction. Although, defiltering can readily be performed, the major
issue is that defiltering can be carried out only for the represented
modes.

Shotorban et al. (2004), Shotorban (2005) and Shotorban and
Mashayek (2006) proposed to use a Langevin type stochastic differ-
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ential equation for evolution of particles when carrier phase is sim-
ulated by LES. A similar model was previously proposed for parti-
cles by Pozorski and Minier (1998, 1999) and Minier and Peirano
(2001) when the carrier phase is simulated by RANS. In the Lange-
vin models, the seen fluid particle velocity, i.e. the velocity of the
carrier phase at the location of the particle, is modeled as

dusi ¼ Aidt þ BijdWj; ð29Þ

where Ai and Bij are drift and diffusion coefficients which are func-
tions of t; yi; v i, and usi. Shotorban and Mashayek (2006) extended
the Langevin applications in particle-laden RANS framework
(Pozorski and Minier, 1998; Pozorski and Minier, 1999; Minier
and Peirano, 2001) to LES using the stochastic differential equation
employed to solve LES equations through Filtered Density Function
approach (Giscquel et al., 2002),

Ai ¼ �
1
qf

op
oxi
þ 1

Re0

o2ui

oxjoxj
� usi � ui

T�L
; Bij ¼

ffiffiffiffiffiffiffiffi
Cij�

q
; ð30Þ

where T�L and � are an appropriate subgrid-scale time scale and the
subgrid-scale dissipation rate, respectively. Cij are the model con-
stants. The calculation of T�L and � and the accompanied model con-
stants are given by Giscquel et al. (2002) for single-phase flows. This
calculation and the constants were implemented by Shotorban and
Mashayek (2006) for the case of particle-laden flows. A modified
versions of this model was proposed by Berrouk et al. (2007) to ac-
count for crossing-trajectory effects.

3. Homogeneous turbulence

In homogeneous turbulence, the fluctuating quantities are sta-
tistically homogenous meaning that their average properties are
independent of the position in the flow. The mean velocity gradient
Aij ¼ ohuii=oxj may be non-zero but a function of time only (Hinze,
1975). Due to the simplicity of the flow configuration in homoge-
neous turbulence, while retaining the rich turbulence physics, its
simulation is widely performed. Complex physical phenomena,
such as turbulence–wall interaction, are not a concern for simula-
tion in homogeneous configurations. Therefore, in the presence of
other physics such as particle–turbulence interaction, one does not
need to be concerned about wall interference when the focus of re-
search is to study, for example, the collision of particles.

In homogeneous turbulence, the instantaneous velocity ui of the
carrier phase is decomposed as

ui ¼ AijðtÞxj þ u0i: ð31Þ

The periodicity of boundary conditions (necessary for application of
Fourier spectral method) cannot be directly applied on the resulting
equations for the fluctuating values due to the spatial variation of
the mean velocity. One possibility to tackle this problem is to use
a coordinate system that moves with the mean velocity. This coor-
dinate transformation has been first used in the numerical simula-
tion of single-phase homogeneous flow by Rogallo (1981). The
transformation has been introduced for the first time in solving
the linearized problem of turbulence (Batchelor and Proudman,
1956) and reads

ni ¼ BijðtÞxj; ð32Þ

where Bij satisfies the equation

_Bij þ BikAkj ¼ 0: ð33Þ

Substituting from (31)–(33) into (1)–(3), the governing equations
for the compressible flow can be described as

oq
ot
þ Aiiqþ Bij

o

oni
qu0j
� �

¼ 0; ð34Þ
o

ot
ðquiÞ þ Ajjqu0i þ Aijqu0j þ Bli

o

onl
qu0iu

0
j

� �
¼ Blj

o

onl
�pdij þ

l
Ref

Bni

ou0j
onn
þ Bnj

ou0i
onn
� 2

3
Bnk

ou0k
onn

dij

� �	
þ l

Ref
Aij þ Aji �

2
3

Akkdij

� �

þ fui

; ð35Þ

o

ot
ðq/Þ þ Ajjq/þ Aijqu0iu

0
j

¼ Aijrij þ Bki
o

onk
riju0j � qeu0i þ

l
ðc� 1ÞRef Prf M

2
f

Bli
oT
onl

 !
þ fe;

ð36Þ

where

rij ¼ �pdij þ
l

Ref

ou0i
onl

Blj þ
ou0j
onl

Bli �
2
3

ou0k
onl

Blkdij

� �
þ l

Ref
Aij þ Aji �

2
3

Akkdij

� �
; ð37Þ

and / ¼ p=ðc� 1Þ þ 1
2 qu0iu

0
i. It is noted that f nðni; tÞ ¼ f ðB�1

ij nj; tÞ and
in the above equations n is suppressed to avoid the complexity of
the notation.

To derive the dispersed phase equations for homogeneous tur-
bulence, first the deviation of the particle velocity from the local
mean velocity of the carrier phase is defined as

v 0i ¼ v i � Aijyj; ð38Þ

where yj is the position of particle in the physical domain. Using
(32), the equations of particle in the transformed domain are de-
rived as

dfi

dt
¼ Bijv 0j; ð39Þ

dv 0i
dt
¼ CD

St
ðu0i � v 0iÞ � Aijv 0j; ð40Þ

and the temperature equation is unchanged.
The homogeneous isotropic turbulence, or briefly called the iso-

tropic turbulence, is the simplest turbulence configuration studied
by DNS and LES. In the isotropic turbulence, Aij ¼ 0 and the velocity
and temperature fields are statistically invariant under transla-
tions, rotations and reflections of the coordinate system (Pope,
2000). The isotropic turbulence could be decaying or (forced) sta-
tionary. Due to the dissipation, turbulence cannot sustain itself in
the decaying isotropic turbulence so it is not statistically station-
ary. In order to generate a statistically stationary isotropic turbu-
lence, the flow is forced at low wavenumbers meaning that
through adding a source term to the right-hand side of the momen-
tum equation turbulent energy of the large scales is artificially gen-
erated at very low wavenumbers (Eswaran and Pope, 1988).

The homogeneous shear turbulence is the second most popular
homogeneous configuration studied in particle-laden turbulent
flows. In homogeneous shear turbulence the mean velocity gradi-
ent is Aij ¼ Cd1id2j which means that the mean velocity vector
has one component in the streamwise direction and it linearly var-
ies in the cross-stream direction. Artificial forcing at larger scales is
not necessary to maintain turbulence. However, without forcing,
the simulation must be terminated at some time after which the
homogeneity assumption breaks down. The reason for the lack of
homogeneity in a long run is that, the large scales of turbulence
grow in time and the computational domain size at some point
in time becomes too small to capture these ever growing scales.
Flow statistics in homogeneous shear turbulence always vary as
a function of time.
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3.1. Carrier phase treated by DNS

The use of DNS for particle-laden homogenous turbulent flows
began more than three decades ago. Most of the DNS studies have
been carried out to explore various physics, which would have
been impossible otherwise in some cases. Also, DNS has been
extensively used to generate data to test various RANS and LES
models. In most of these studies, the carrier phase has been simu-
lated by spectral methods.

The first DNS of particle-laden turbulence was performed by Ri-
ley and Patterson (1974) for isotropic turbulence. Clustering or the
so-called ‘‘preferential accumulation” of particles in turbulent
flows was first observed in DNS by Squires and Eaton (1991) and
then further investigated in greater detail by others for isotropic
configuration (Wang and Maxey, 1993; Mashayek et al., 1997; Sun-
daram and Collins, 1997; Holtzer and Collins, 2002; Collins and
Keswani, 2004; Chun et al., 2005; Shotorban and Balachandar,
2006).

Fig. 1 shows the accumulation of particles for various Stokes
numbers (defined based on the Kolmogorov time scale) in a
homogenous shear turbulence. The initial Taylor scale Reynolds
number for the flow is, Rek ¼ 24:33. The accumulation of particles
is the most at St ¼ 1:6 and the least at St ¼ 0:16. At very small
Stokes numbers, inertial particles behave similar to fluid particles;
therefore, not a significant particle accumulation is seen at smaller
Stokes numbers. With the increase of the Stokes number, inertial
particles, due to the centrifugal effects, further spin out of vortical
structures and accumulate in regions of high strain rate and low
Fig. 1. Particle accumulation in the DNS of a homogeneous shear turbulent flow for vario
Stokes number here is defined as the ratio of the particle time constant and the instantane
the spanwise direction. Simulation details are given in Shotorban et al. (2007).
vorticity. At Stokes numbers around unity, the maximum accumu-
lation of particles occurs. With further increase of the Stokes num-
ber, the particles exhibit less accumulation since these high-inertia
particles are less correlated to their local fluid flow. The anisotropy
of particle accumulation is evident in Fig. 1.

To measure the preferential accumulation of particles and its
anisotropy in the homogeneous shear turbulence, Radial Distribu-
tion Functions (RDFs) can be used (Shotorban and Balachandar,
2006). A three-dimensional RDF is defined as the ratio of the num-
ber of particle pairs found at a certain separation distance to the
expected number if the particles are uniformly distributed (Reade
and Collins, 2000; Holtzer and Collins, 2002). The three-dimen-
sional RDF, for a total of Np particles, is defined as

g3DðriÞ ¼
Pi=Vi

P=V
; ð41Þ

where P ¼ NpðNp � 1Þ=2 is the total number of particle pairs; Pi is
the number of pairs within separation distance between
ri � Dr=2 and ri þ Dr=2; V is the total volume of the system and
Vi ¼ 4

3 p ðri þ Dr=2Þ3 � ðri � Dr=2Þ3
h i

is the volume of the shell with
a thickness of Dr and a radius of ri at its middle. The two-dimen-
sional RDF is defined as

g2DðriÞ ¼
ePi=AieP=A

; ð42Þ

where eP is the total number of particle pairs in a planar slice of
small thickness; ePi is the number of pairs within the planar slice
us Stokes numbers in one-way coupling at the same realization of the carrier-phase.
ous Kolmogorov time scale. Particles are projected from a thin slice perpendicular to
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with separation distances between ri � Dr=2 and ri þ Dr=2; A is the
area of the planar slice and Ai ¼ p ðri þ Dr=2Þ2 � ðri � Dr=2Þ2

h i
is the

area of the shell associated with the nominal separation distance ri

within the planar slice. Note that three different planar RDFs can be
computed by choosing mutually perpendicular planar slices and
here we denote g2D;i to be the two-dimensional RDF with slice per-
pendicular to xi direction. Using 2D RDFs, the anisotropy of the pref-
erential accumulation can be measured in homogeneous shear
turbulence (Shotorban and Balachandar, 2006). Fig. 2 shows that
at the scales smaller than the Kolmogorov length scales, particles
are most accumulated in the streamwise direction (horizontal in
Fig. 1) and they are least accumulated in the cross-stream direction.

The modulation of turbulence due to particles (Squires and Ea-
ton, 1990; Boivin et al., 1998) as well as the collision and coagula-
tion of particles (Sundaram and Collins, 1997; Reade and Collins,
2000), were also studied by DNS for isotropic turbulence. Sunda-
ram and Collins (1997) quantified the collision frequency correla-
tion to the RDF and the relative velocity probability density
function for various Stokes numbers. Reade and Collins (2000)
showed that these functions are also controlling the coagulation
of particles.

Spectral method was also used for simulations of plane-strain
and axisymmetric homogenous turbulent flows laden with parti-
cles (Barré et al., 2001; Sengupta et al., 2005). The significant fea-
ture of these flows was the presence of a relative mean velocity
between the two phases, unlike the homogeneous shear flow
where the two phases had the same mean velocity (Taulbee
et al., 1999; Mashayek and Taulbee, 2002). This relative velocity
led to an investigation of the ‘‘compressibility” of the dispersed
phase, despite the incompressible carrier phase, as well as the
crossing trajectories effect. The data published in Barré et al.
(2001) and Sengupta et al. (2005) could serve for validation of var-
ious two-phase models in capturing these important phenomena.

All of the above studies were carried out for isothermal cases
treating carrier phase by DNS using spectral methods. There have
also been several investigations carried out via spectral methods
for non-isothermal particle-laden turbulent flows. Jaberi (1998)
showed that in non-isothermal, isotropic turbulence with station-
ary velocity and decaying temperature fields, the probability den-
sity function of the fluid temperature deviates farther away from a
Gaussian distribution with the increase of the mass loading ratio.
Jaberi and Mashayek (2000) simulated the dispersed phase in
forced isotropic turbulence. They found that the variance of the
fluid and particle temperature increases as the mass loading ratio
or the Prandtl number increases. The mechanism of heat transfer
Fig. 2. 2D and 3D (1, 2, and 3 show the streamwise, cross-stream, and spanwise
directions, respectively) radial distribution functions in homogeneous shear
turbulence for St ¼ 1:2. Stokes number here is defined as the ratio of the particle
time constant and the instantaneous Kolmogorov time scale. Simulation details are
given in Shotorban et al. (2007).
between the two phases in the presence of a mean temperature
gradient in the decaying isotropic turbulence was also investigated
by Sato et al. (1998). The results showed that the particle temper-
ature and velocity were well correlated in the direction of the
mean temperature gradient. Later, Shotorban et al. (2003) studied
the non-isothermal dispersion of particles in homogeneous shear
turbulence. Their results indicated that the increase of the mass
loading ratio or the particle time constant generally reduced the
temperature variance and the magnitude of the turbulent heat flux
of both carrier and dispersed phases. The data generated by DNS in
this work was also used for verification of a probability density
function model for the non-isothermal particle-laden turbulence
(Pandya and Mashayek, 2003).

Spectral simulation of homogeneous particle-laden turbulence
was extended to compressible flows by Mashayek (1998a,b,
1999, 2000, 2001) and Mashayek and Jacobs (2001), while also
considering evaporating/reacting droplets. The Mach number was
chosen small to avoid dealing with shocks. The results of the sim-
ulations were used to investigate the evolution of various terms in
the transport equations for kinetic and internal energies as well as
Reynolds stresses of both phases. The simulations were also useful
to study the mechanisms of heat transfer between the particles
and the carrier phase in both isotropic and homogeneous shear
turbulence. The two-way coupling cases showed that the spectral
method is capable of providing smooth results when using the par-
ticle-source-in-cell (PSIC) method.

3.2. Carrier phase treated by LES

The extent of published works in LES of particle-laden homoge-
neous turbulence is limited, as compared to DNS studies. To the
best knowledge of the authors, Yeh and Lei (1991a,b) were the first
who implemented LES for the simulation of carrier phase to study
particle dispersion in isotropic and homogeneous shear turbulent
flows. Simonin et al. (1993) used LES data to verify their two-fluid
model. The LES model used in these studies were fixed-constant
Smagorinsky in one-way coupling. Boivin et al. (2000) conducted
a priori test study for two-way coupling effect in isotropic turbu-
lence. In all of these studies the effect of SGS on the particles was
not considered and in the latter work, the effect of particles on
the SGS was neglected in two-way coupling.

One of the main issues in implementing LES for treating the car-
rier phase is to model the effect of subgrid scales on particles.
These effects cannot be neglected when the filtered energy is sig-
nificant and/or the particle time constant is small (Armenio et al.,
1999). The particles with larger time constants mainly interact
with the large scales of turbulence. The effects of SGS on particles
have been modeled through deterministic and stochastic ap-
proaches as discussed in Section 2.2.1.

To verify their proposed models, which were to account for the
effect of SGS on particles, Shotorban and co-workers (Shotorban
and Mashayek, 2005a,b, 2006; Shotorban et al., 2007) conducted
LES of homogeneous turbulence with one-way coupling. The veri-
fication of their stochastic model was carried out in a decaying iso-
tropic turbulent flow (Shotorban and Mashayek, 2006). They
showed that the stochastic model well predicts the results ob-
tained by DNS for small particle time constants and with the in-
crease of the particle time constant, the discrepancy between
stochastic model predictions and DNS results increases. Shotorban
and Mashayek (2005b) improved their stochastic model predica-
tions by a modification. Their improved model took into account
the high inertia effect of large particle time constants. The verifica-
tion of the approximate deconvolution for the reconstruction of the
approximate instantaneous velocity for the use in the particle
equations was performed in homogenous shear turbulence (Sho-
torban and Mashayek, 2005b; Shotorban et al., 2007). As men-
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tioned before, defiltering can be carried out only for the represen-
tative modes. The filter used in our studies is Gaussian and the fil-
ter size is twice the grid size that is associated with the
represented modes. This ensures that the defiltering operation is
valid.
Fig. 3. Snapshots of particles with St ¼ 5:0 periodically injected upstream and
downstream of the square cylinder. The square cylinder flow at a Reynolds number,
Re ¼ 150 and free stream Mach number Ma1 ¼ 0:1 sheds periodically as shown by
the vorticity contours and streamlines. The particles injected downstream of the
square cylinder accumulate at the square corner and shed in packages.
4. Inhomogeneous turbulence

4.1. Carrier phase treated by DNS

A complete review of the DNS with spectral element (SE) is out-
side the scope of this review. Here, we focus on the DNS of com-
pressible flow with discontinuous SE, that has received relatively
little attention. In Jacobs et al. (2005b), the multidomain spectral
method is validated for simulation of compressible turbulent
flows. The high-order Navier–Stokes solver is tested extensively
for 2D and 3D gas dynamics problems (Kopriva, 1998; Jacobs
et al., 2003, 2004a, 2005a,b), and proven itself efficient, accurate,
and robust. It is shown that the method requires fewer degrees
of freedom compared to lower-order methods to resolve the turbu-
lence energy spectrum. In Jacobs (2003) and Sengupta et al.
(2008b), computations of the flow over a backward-facing step
show its efficiency in complex geometries.

4.1.1. Eulerian–Lagrangian method based on PSIC
Typically, when dealing with complex geometries, the carrier

phase computation in conjunction with PSIC method relies on sim-
ple Cartesian grid based methods (Crowe et al., 1977). Descretiza-
tion is performed with the low order (typically second order)
finite-difference time-domain solver. The Cartesian grid is essential
to the success of the PSIC method, since it yields an accurate two-
way particle coupling with low levels of numerical noise. The
Cartesian grid, however, severely limits the geometric flexibility.
Moreover, the low order scheme restricts temporal and spatial
accuracy. This issue causes considerable problems when consider-
ing large scale problems in complex geometries. In particular, sig-
nificant dispersion errors appear unless prohibitively fine grids are
used.

In on-going efforts, we are addressing these limitations by
developing high-fidelity PSIC based on a carrier-flow computation
with spectral methods (Jacobs et al., 2007; Jacobs and Hesthaven,
2006). The spectral multidomain method alleviates the shortcom-
ings encountered in the low-order methods for simulation of the
carrier phase as discussed in Section 1. The challenges in develop-
ing PSIC based on the high-order multidomain method lie in a con-
sistent two-way coupling, that preserves the favorable carrier-flow
simulation characteristics in the two-way coupled EL simulation.

We have developed an efficient particle tracking algorithm that
is consistent with the high-order multidomain method (Jacobs
et al., 2007; Jacobs and Hesthaven, 2006). The particle tracking
algorithm takes advantage of the mapping in the carrier flow sol-
ver, that maps each physical element in the grid to one square
master element. By mapping the particle coordinate to the same
master element, several parts of the particle algorithm can conve-
niently be performed in the mapped space. Locating the particle’s
host cell simplifies to a comparison of the mapped particle coordi-
nate to the square’s coordinates. A Lagrange interpolation on the
structured, orthogonal grid within each master element deter-
mines the carrier phase flow at the particle location. Higher dimen-
sional interpolation is easily performed on the local tensorial grid
in each element. It is noted that a stable and accurate two-way
coupled EL simulation requires the order of interpolation to match
the order of the approximating polynomial within each element. In
a one-way coupled simulation, where the particle motion is influ-
enced by the carrier flow but not vice versa, a lower order Lagrange
interpolation provides engineering accuracy, while saving compu-
tational time. From stability and accuracy considerations of a two-
way coupled computation, it follows that the time integration
scheme has to match the integration scheme used for the carrier
flow. The developed algorithm handles complex particle boundary
interaction by determining a levelset using a multidomain method.
The precomputed levelset determines the distance and direction
relative to the wall at each grid point. High-order interpolation of
the levelset to the particle position then provides all the necessary
information to implement elastic/inelastic interactions with com-
plex boundaries.

The particle influence on the continuum is determined by redis-
tribution of the mass, momentum and energy generated by the
particle. Redistribution computations use large smooth weight
functions. The smooth weighting prevents Gibbs oscillations that
occur in high-order interpolation of non-smooth functions. Com-
pared to typical non-smooth redistribution schemes, this dramati-
cally decreases the number of particles needed in a computational
cell to produce low noise sources without filtering. Low-order
redistribution usually requires additional filtering (Maxey et al.,
1997). A large smooth Gaussian-like function (Jacobs and Hestha-
ven, 2006; Jacobs et al., 2006) per particle sums the particle’s influ-
ence into the source terms in Eqs. (1)–(3). The high-order weight
function reduces the numerical instabilities attributed to aliasing
that is a result of the finite size of the particle cloud and non-line-
arity in the source terms.

4.1.2. Particle-laden flow computations
We have studied several one-way coupled particle-laden flows

with the high-order SE based DNS of the carrier phase. In Jacobs
et al. (2004a), we studied the particle dispersion in the wake of a
blunt body. The two-dimensional, shedding square cylinder flow
was simulated on a grid with 196 elements. From a convergence
study (Jacobs, 2003), it followed that an eighth-order polynomial
approximation per element sufficed for a grid independent solu-
tion. The total number of required grid points was thus approxi-
mately 16,000. This is a significantly lower resolution
requirement compared to 70,000 points required for lower order
simulations of the flow over the rectangular cylinder (Armstrong,
2008).

We identified a lock-in behavior of particles in the wake of the
cylinder. The particles released behind the rectangle are shielded
from the incoming flow by the cylinder. The periodically changing
vertical direction of the flow behind the square leads to vertical
transport of particles. The vertically transported particles accumu-
late at the rear corners of the square. Once a carrier phase vortex is
shed off, the accumulated particles shed along with the vortex.
Fig. 3 shows the locked-in packages as observed downstream of
the vortices in the wake’s von Karman street. Particles were found
to lock in between the shedding vortices when the particle re-
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sponse time is nearly equal to the time period of the vortex shed-
ding in the wake, i.e. when / defined by the ratio of the particle
time constant to the shedding time period is of the order unity,

/ ¼ td

1=f
¼ St

1=Str
’ 1; ð43Þ

where f is the shedding frequency and Str is the Strouhal number. It
was determined that forces other than the Stokes drag, such as the
Basset history and Saffman lift forces can blur the particle focusing
in wake flows when the particle to fluid density ratio is less than 20.

We studied particle-laden, unsteady, separated flow in Jacobs
(2008). We computed a non-confined or open backward-facing
step carrier flow at a Reynolds number of Ref ¼ 1500 based on
the step height and the inflow velocity, and a Mach number of
Ma ¼ 0:4 based on the inlet velocity and the isothermal wall tem-
perature. In Jacobs (2003) this flow was studied extensively in two
and three dimensions. The grid consists of 180 domains. On each
subdomain a tenth-order approximation of the Navier–Stokes
equations is projected using a nodal basis. The computational do-
main size is chosen to ensure a minimal blockage of the top inflow.
At the inflow boundary a uniform velocity is specified, while at the
outflow boundary a velocity profile is specified according to an
experimental averaged turbulent boundary layer. The wall bound-
ary conditions are no-slip and isothermal. The flow is initialized
with the uniform inlet velocity.

In 2D, the backward-facing step flow exhibits a quasi-turbulent,
periodic shedding of a three-vortex system behind the step (Le and
Moin, 1994). First, a vortex forms near the corner of the step. This
vortex grows in strength and size as it is fed by the external flow.
With increasing strength, the vortex increasingly pushes itself
away from the wall, until it sheds off. The shedding occurs in an
intimate three vortex interaction between the vortex at the step,
the corner vortex behind the step, and the shed vortex (Fig. 4(a)).

The averaged flow pattern is quite regular with a typical recir-
culation region behind the step (Fig. 4(b)). A corner vortex is also
present behind the step in the averaged flow field. The flow sepa-
ration at the sharp edge of the step is trivial. The shear layer that
emanates from the step corner reattaches behind the step. The
non-trivial flow separation on the lower wall behind the step be-
tween the corner vortex and the recirculation sets the stage for a
particle dispersion study.

The separation behavior is analyzed for several Stokes numbers
that are based on a carrier flow time defined by the ratio of step
height over the free stream velocity. Inertial particles with a Stokes
number less than one, injected at the corner separation location
are moved away from the wall by the separating carrier phase flow
along a line that consequently moves with a shed vortex. This dis-
persion behavior is comparable to the moving separation behavior
of separating fluid particles (Surana and Haller, 2008). With the
Stokes number increasing to one, the particles eject away from
the wall to a lesser extent, until at St ¼ 1:0 the particles are trapped
edge sep

(a) streamline snapshot

Fig. 4. Instantaneous (a) and averaged (b) streamlines of the 2D flow over an open back
instantaneous streamlines show a complex vortex shedding pattern of this flow. If ave
vortex separation, and a shear layer reattachment.
at the corner separation location. When the Stokes number is lar-
ger, the particles (remarkably) start to separate away from the wall
again. The particles, however, no longer move along with the shed
vortex like the smaller Stokes number particles. Instead they sep-
arate into distinct material lines, whose origin remains fixed in
time (Fig. 5). This separation behavior of particles is much like
the fixed separation of fluid particles in moderately fluctuating un-
steady separated flows (Weldon et al., 2008). In separating flow
with large fluctuations, the delayed response of inertial particles
to the fluid leads to inertial particles separating in a fixed manner,
while the fluid particle separating line is moving. The Saffman lift
force moves the particles away from the wall and pollutes the dis-
tinct character of the separation material line.

We further performed large-scale DNS of the three-dimensional
transitional flow over the same backward-facing step geometry
(Jacobs, 2003; Sengupta et al., 2008b) at Re ¼ 3000. A counter-cur-
rent suction applied at the step corner was investigated to enhance
mixing and dispersion of the particle-laden flow behind the step.

Periodic boundary conditions in the third dimension establish a
periodic flow. For the computation to be stable and to capture the
periodic structures, a minimum non-dimensional length of 6 in the
spanwise direction was required. An eighth-order approximation
converges the solution, compliant with the resolution require-
ments established in Jacobs et al. (2005b). The total number of grid
points for this computation is four million. This is a factor three
improvement over the incompressible computation with a low or-
der finite volume method employing 12 million grid points in
Wengle et al. (2001). Though the incompressible simulation
showed good comparison of the averaged and turbulent stresses
with the experiment, some discrepancies were observed. More-
over, no data on the dissipation rate was available, which is critical
to establish a sufficient DNS resolution. The SE simulation was for
compressible flow, whereas the finite volume computations were
for incompressible flow. In addition to the difficulty in comparing
compressible SE DNS with incompressible finite volume DNS, it
is, for these reasons, difficult to directly compare the resolution
of the SE and the finite volume.

For the non-manipulated BFS flow, large growing structures
were observed in the transient unstable shear layer by analyzing
the pressure contours. These structures are nominally 2D up to
the reattachment point of the shear layer. When the flow reat-
taches, the shear layer bursts, and the flow further downstream
is mostly 3D and turbulent, recovering to a fully developed turbu-
lent wall flow. A slight suction at the corner has a large impact on
the flow. The shear layer, that is now almost immediately three
dimensional, feeds a large turbulent recirculation structure behind
the step.

The computed averaged velocities for the flow at different Mach
numbers are shown in Fig. 6. The mean velocities of the carrier
phase at Ma ¼ 0:2 show good comparison with the published
experimental results on the incompressible flow. Our results show
aration
reattachment

corner vortex 
separation

(b) averaged streamlines

separation bubble

ward-facing step at Reynolds number Ref ¼ 1500 and Mach number Ma ¼ 0:4. The
raged, the streamline pattern exhibits a typical recirculation with edge and corner



Fig. 5. Inertial particles and vorticity contours at three equi-spaced consecutive times within a flow period in the quasi-steady backward-facing step flow. The particles are
continuously injected near the corner separation location. Material lines form at the corner separation location and are anchored in the fixed averaged zero skin friction
location.
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Fig. 6. Comparison of the Favre averaged streamwise, U, and wall normal, W, velocity profiles at various x locations behind a backward-facing step for different Mach
numbers, to the Reynolds averaged velocity profiles of the incompressible flow experiment (Wengle et al., 2001) for a backward-facing step flow at Re ¼ 3000.
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that the growth rate of the separated shear layer increases with in-
crease in Mach number. This leads to a shorter mean recirculation
length for Ma > 0:2, explaining the observed differences with the
experiment in Fig. 6. We are currently undertaking more detailed
analysis of effect of Mach number on the flow, which will be re-
ported in a separate publication.
We investigated the dispersion of periodically injected particles
at the step corner. A limited understanding of this type of flow in
liquid-fuel dump combustors motivated this study. Dump combus-
tors are characterized by a suddenly changing or expanding geom-
etry comparable to the backward-facing step. The dispersion
mechanisms of injected fuel that atomizes into droplets in the
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recirculation zone (or ‘‘dump”), are complex and are not docu-
mented. Here, we report the first strides in our on-going studies.

To investigate the dispersion, we injected particles, as shown in
Fig. 7, slightly upstream of the step corner at a streamwise location
of x ¼ 4:95, which is upstream of and close to the step at x ¼ 5:0
(Jacobs, 2003). Two release positions in the wall normal direction
at z ¼ 1:03 and z ¼ 1:10 where considered. The first release posi-
tion is inside the boundary layer at the step. The second release po-
sition is towards the outside of the boundary layer at the step.
Particles are periodically released at their respective positions with
a time interval of 0.25. The simulations are run for t = 16.0, at
which time snapshots of the particles are inspected. The particles’
velocities are initialized with the fluid velocities at the particles’
positions. At the wall, a perfectly inelastic collision is considered
for the particles. Two particle Stokes numbers of St ¼ 0:1 and 1.0
are considered.

In Figs. 8 and 9 the particle snapshots for all cases are shown in
side and top views, respectively. The particles with a faster re-
sponse time are increasingly captured in the recirculation region
behind the step. Particles with St ¼ 1 injected outside the bound-
ary layer are convected over the recirculation region. The employ-
ment of the countercurrent shear clearly enhances the mixing of
the particles (right portions of Figs. 8 and 9). More particles are
dumped as a result of countercurrent shear, and they tend to accu-
mulate in the instantaneously larger, more stable recirculation
structure of the countercurrent shear flow (as compared to the
non-manipulated backward-facing step flow). Large longitudinal
flow structures were observed near the bottom wall in the recircu-
lation area behind the corner. These structures transport particles
upstream towards the step.

4.2. Carrier phase treated by LES

Spectral element methods are excellent candidates for LES of
practical flows. The features that make them superior to low-order
methods and/or single domain spectral schemes for DNS of practi-
cal flows, are equally beneficial in a LES context. However, there
have been limited attempts to apply these methods towards LES.
Spectral element filtering strategies have been studied in Levin
et al. (1997), Fischer and Mullen (2001), Blackburn and Schmidt
(2003), Karamanos (1999), Karamanos and Karniadakis (2000).
We have recently developed LES methodologies for compressible
flows using two discontinuous spectral element methods (Seng-
upta et al., 2007, in press). Detailed description of the methodolo-
gies is beyond the scope of this review. The governing equations for
LES of particle-laden compressible flows and the closure of the
sub-grid terms, for the one-way coupling case are discussed in Sec-
tion 2.2.1.
boundary layer at the st

Fig. 7. Schematic of the particle injection loca
The dispersed phase equations are the same as those outlined in
Section 2.2. However, the fluid velocities in the equation for parti-
cles require additional consideration. In flows where the effect of
sub-grid scale (SGS) fluctuations on particle dispersion is expected
to be negligible, the resolved scale velocity, which is directly avail-
able in LES simulation is used for calculating the particle slip as dis-
cussed in Section 2. On the other hand, if the effect of SGS
fluctuations is to be incorporated, then the sub-grid component
is added to the resolved scale velocity for computing the particle
slip (see Section 2.2.1).

4.2.1. LES of inhomogeneous shear flows
All turbulent flows of practical interest are inhomogeneous,

where the inhomogeneity could arise from spreading of the flow
into non-turbulent ambient (e.g. jets) or imposed by rigid flow
boundaries (e.g. channel) or a combination of both (e.g. back-
ward-facing step). LES studies of particle-laden inhomogeneous
flows have focussed mostly on jets and channels. Temporal mixing
layers have also been studied, especially for two-way coupled sim-
ulations (Okong’o and Bellan, 2004; Leboissetier et al., 2005). The
above studies were motivated in part by the fact that LES is more
suitable for engineering applications over DNS. However, it should
be noted that accurate predictions of higher order statistics with
LES have proven to be challenging. This is because unlike the mean
quantities which vary on a length scale comparable to the energy
containing motions (resolved scales) and hence are little affected
by filtering, the higher order statistics may have significant contri-
bution from the sub-grid (unresolved) scales. As an example, the
exact Reynolds stresses can be written as a sum of resolved scale
Reynolds stresses, cross-stresses and sub-grid scale Reynolds stress
(Pope, 2000). The usual practice in a posteriori LES is to consider
only the resolved scale Reynolds stress as the ‘‘true” stress. Such
a consideration could lead to significant differences with DNS at
high Reynolds number or at coarse resolution when contributions
from the sub-grid scales become significant.

Among wall bounded shear flows, the fully-developed turbulent
channel flow has been studied most frequently, owing to its geo-
metric simplicity, allowing the application of periodic boundary
conditions in the streamwise and spanwise directions. Most of
these works have used single-domain spectral schemes or finite
difference methods. Wang and Squires (1996) studied particle-la-
den incompressible channel flow at two different Reynolds num-
bers. They considered one-way coupling between the phases, and
the only forces acting on the particles were the drag and gravity.
The subgrid stresses were modeled using a dynamic eddy-viscosity
model. Particles with different time constants were considered and
the dispersed phase statistics were compared with the DNS of Rou-
son and Eaton (1994) and experiments of Kulick et al. (1994). The
ep

second injection location

first injection location

tions for the backward-facing step flow.
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Fig. 8. Side view snapshots of the particle distribution for the backward-facing step flow without (a–d) and with (e–h) counter-current shear. Injection locations are outside
the boundary layer in (a, c, e, and g) and inside the boundary layer in (b, d, f, and h) for St = 1 (a, b, e, and f) and St ¼ 0:1 (c, d, g, and h).

Fig. 9. Top view snapshot of particle-laden flow in Fig. 8.
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mean streamwise velocity compared well with the DNS for the par-
ticles with small time constants. However, second-order statistics
showed considerable differences, possibly due to the coarse grid
used for the carrier phase.

Armenio et al. (1999) studied the effect of the sub-grid scale
motion on the particle dynamics in a turbulent channel flow at
Res ¼ 175. They used a pseudo-spectral collocation method for
solving the carrier phase equations. In order to study the effect
of sub-grid scale velocity fluctuations on particle motion without
the influence of modeling errors, they performed a priori analysis,
where the tracer particles were advanced using the fully resolved
velocity field from DNS and the filtered velocity field. In a second
set of simulations they studied the effect of interpolation and sub-
grid modeling on particle motion in an actual LES. They concluded
that at the Reynolds number considered, the statistics computed
were not very sensitive to the subgrid velocity fluctuations, unless
a significant portion of the energy was removed with a large filter.
The use of the dynamic Smagorinsky model over the Smagorinsky
model resulted in a much better dispersion statistics in their a pos-
teriori analysis. They also studied the effect of including inertia of
particles and observed that the inertial particles were less affected
by sub-grid motions than were the tracer particles.

Recently Kuerten (2006) performed LES of particle-laden turbu-
lent channel flow using the dynamic Smagorinsky and approxi-
mate de-convolution model. Fourier–Galerkin method was used
in the periodic directions while Chebyshev-collocation method
was applied in the wall normal direction. Three different particle
Stokes numbers and two Reynolds numbers were considered. For
the low Reynolds number case, it was shown that the particle
velocity fluctuations were underpredicted when filtered velocity
available from LES was used in the particle equations. Better agree-
ment was obtained with an inverse filtering model. The approxi-
mate deconvolution model used in the work gave better results
than the dynamic eddy viscosity model. However, the difference
between the two models was smaller for the high Reynolds num-
ber case.

Single-phase large-eddy simulations of channel flow using
spectral element method have been performed by Blackburn and
Schmidt (2003) and more recently by Sengupta et al. (in press).
In Sengupta et al. (in press), flow at two different Reynolds num-
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bers, Res ¼ 180 and Res ¼ 570 were investigated. A sub-domain
distribution of 10 � 10 � 16 was employed in the streamwise,
spanwise and wall normal directions for both Reynolds numbers.
Two polynomial orders, p ¼ 6 and p ¼ 8 were used for
Res ¼ 180 and Res ¼ 570, respectively. Fig. 10 compares the mean
velocity profile with the DNS of Moser et al. (1999). Good compar-
ison with experiment and resolved DNS demonstrates that the LES
methodology proposed in Sengupta et al. (in press) is able to pre-
dict the flow. Therefore, the dispersed phase computation is
started with the above stationary fluid flow field. The channel is
vertically oriented as in the study by Wang and Squires (1996)
and Rouson and Eaton (2001). The Stokes number of the particles
defined by Eq. (24) is 2.0, which corresponds to the 50 lm diame-
ter glass particles used in Wang and Squires (1996) and Rouson
and Eaton (2001). The particle forces taken into account are the
Stokesian drag and gravity. Properties of the dispersed phase are
obtained by following the trajectories of 200,000 particles. The par-
ticles are initially uniformly distributed over the channel. The
boundary conditions for the dispersed phase include periodicity
in the streamwise and spanwise directions and a specular reflec-
tion at the walls. The statistics are obtained by binning the parti-
cles in homogeneous boxes stacked along the wall normal
direction. In Fig. 11, the mean streamwise velocity for the dis-
persed phase is compared with that from the DNS of Rouson and
Eaton (2001). The mean velocity for the carrier phase is also shown
in the figure. The LES result for particles are in good agreement
with DNS for zþ > 10. The under-prediction �5% near the wall is
because the near wall structures are not as accurately resolved in
LES as in DNS and consequently the preferential concentration of
particles in the near wall low speed streaks are lower in LES. This
was also argued by Wang and Squires (1996) to explain similar dif-
ferences between their LES and the DNS data of Rouson and Eaton
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Fig. 11. Dispersed phase mean normalized streamwise velocity plotted in wall
coordinates for the channel flow at Re = 3000.
(2001). More recently, Marchioli et al. (2008) concluded that from
a qualitative viewpoint, LES can reproduce certain features of the
turbulent flow field (for instance, the dispersed phase velocity sta-
tistics). However, quantitative prediction of local particle segrega-
tion and accumulation (especially in the near wall region) are
much less accurate. The particles lead the fluid in the viscous
sub-layer and in the bottom part of the buffer layer ðzþ < 12Þ,
while slightly lagging the fluid in the region above that. Calculation
of second-order statistics for the dispersed phase is currently
underway and will be reported in a future publication.
5. Concluding remarks

We have reviewed computational research on particle-laden
turbulent flows using spectral methods for direct numerical simu-
lation (DNS) and large-eddy simulation (LES) of the carrier phase in
conjunction with particle-source-in-cell (PSIC) method for the dis-
persed phase.

Homogeneous turbulence computation with Fourier pseudo-
spectral method has provided an idealized, but accurate, carrier
phase determination that has been the work horse for fundamental
studies of particle-laden turbulent flows and the development of
LES and Reynolds-average Navier–Stokes (RANS) models. In a large
body of work, fundamental particle dispersion behavior, turbu-
lence modification by particles, and particle–fluid interactions
have been identified. A wealth of statistical data is available for
the validation and improvement of particle-laden flow turbulence
models developed in the frameworks of LES, RANS, and probability
density function (PDF).

In a higher level of flow complexity that includes boundary ef-
fects, the particle-laden, turbulent channel, jet and shear flows
have been computationally studied with spectral or spectral-like
methods. Despite the relative geometric simplicity (usually a rect-
angular domain), boundary effects have been shown to have large
impact on the flow and the particle dispersion. Particle motion is
significantly affected by the large coherent structures forming in
these flows. Particle–wall interactions and the modeling thereof
continue to pose a significant problem in LES. A large amount of
data is also available for these flow geometries.

The focus of computation of particle-laden flow in complex
geometries has been on the development of accurate spectral-like
methods for simulation of carrier-phase turbulent flows. In a series
of papers, a spectral carrier-phase solver and an accurate particle–
fluid coupling have been developed and validated. In two-dimen-
sions the quasi-turbulent particle-laden flow over a square cylin-
der and a backward-facing step has been studied. Recently, the
three-dimensional particle-laden backward-facing step using a
multidomain spectral method has also been computed.

Despite significant work, the near future in particle-laden com-
pressible, turbulent flow research holds many challenges. The
number of degrees of freedom in a complex geometry is of course
very large. Computation of any complex geometry with DNS is and
will be, for a foreseeable future, too computationally intensive de-
spite significant computational resources. Therefore, more compu-
tationally affordable LES methods are eminent to further the
physical understanding and the ability to analyze real particle-la-
den flows.
Acknowledgements

The authors wish to acknowledge the financial support of the
National Science Foundation, the US Office of Naval Research,
and the Petroleum Research Fund. The computational resources
were provided by the National Center for Supercomputing Applica-
tions and the San Diego Supercomputing Center.



K. Sengupta et al. / International Journal of Multiphase Flow 35 (2009) 811–826 825
References

Armenio, V., Piomelli, U., Fiorotto, V., 1999. Effect of the subgrid scales on particles
motion. Phys. Fluids 11, 3030–3042.

Armstrong, K., 2008. How does inertial particle dispersion relate to the finite time
lyapunov exponent in a vortex dominated wake? Master’s Thesis, San Diego
State University.

Barré, C., Mashayek, F., Taulbee, D.B., 2001. Statistics in particle-laden plane strain
turbulence by direct numerical simulation. Int. J. Multiphase Flow 27, 347–378.

Batchelor, G.K., Proudman, I., 1956. The large-scale structure of homogeneous
turbulence. Philos. Trans. Roy. Soc. Lond. 248, 46–405.

Berrouk, A.S., Laurence, D., Riley, J.J., Stock, D.E., 2007. Stochastic modelling of
inertial particle dispersion by subgrid motion for LES of high Reynolds number
pipe flow. J. Turbul., 50.

Blackburn, H.M., Schmidt, S., 2003. Spectral element filtering techniques for large-
eddy simulation with dynamic estimation. J. Comput. Phys. 186, 610–629.

Boivin, M., Simonin, O., Squires, K.D., 1998. Direct numerical simulation of
turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375,
235–263.

Boivin, M., Simonin, O., Squires, K.D., 2000. On the prediction of gas–solid flows with
two-way coupling using large eddy simulation. Phys. Fluids 12, 2080–2090.

Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A., 1987. Spectral Methods in Fluid
Dynamics. Springer, New York, NY.

Chen, M., Kontomaris, K., McLaughlin, J., 1995. Dispersion, growth, and deposition of
coalescing aerosols in a direct numerical simulation of turbulent channel flow.
ASME, FED-vol. 228, pp. 27–32.

Chun, J., Koch, D.L., Rani, S.L., Ahluwalia, A., Collins, L.R., 2005. Clustering of aerosol
particles in isotropic turbulence. J. Fluid Mech. 536, 219–251.

Collins, L.R., Keswani, A., 2004. Reynolds number scaling of particle clustering in
turbulent aerosols. New J. Phys. 119. Art. No. 119.

Crowe, C.T., Sharma, M.P., Stock, D.E., 1977. The particle-source in cell (PSI-Cell)
model for gas-droplet flows. J. Fluids Eng. 6, 325–332.

Crowe, C., Sommerfeld, M., Tsuji, Y., 1998. Multiphase Flows with Droplets and
Particles. CRC Press, Boca Raton, FL.

Deville, M.O., Fischer, P.F., Mund, E.H., 2002. High-Order Methods for
Incompressible Fluid Flow. Cambridge University Press, Cambridge.

Erlebacher, G., Hussaini, M.Y., Speziale, C.G., Zang, T.A., 1992. Toward the large eddy
simulation of compressible turbulent flows. J. Fluid Mech. 238, 155–185.

Eswaran, V., Pope, S.B., 1988. An examination of forcing in direct numerical
simulations of turbulence. Comput. Fluids 16, 257–278.

Fischer, P.F., Mullen, J.S., 2001. Filter based stabilization of spectral element
methods. C. R. Acad. Sci. Paris 1 332, 265–270.

Germano, M., Piomelli, U., Moin, P., Cabot, W.H., 1991. A dynamic subgrid-scale
eddy viscosity model. Phys. Fluids A 3, 1760–1765.

Ghosal, S., Moin, P., 1995. A dynamic localization model for large-eddy simulation of
turbulent flows. J. Comput. Phys. 118, 24–37.

Gidaspow, D., 1994. Multiphase Flow and Fluidization: Continuum and Kinetic
Theory Descriptions. Academic Press, Boston, MA.

Giscquel, L.Y.M., Givi, P., Jaberi, F.A., Pope, S.B., 2002. Velocity filtered density
function for large-eddy simulation of turbulent flows. Phys. Fluids 14, 1196–
1213.

Gouesbet, G., Berlemont, A., 1999. Eulerian and lagrangian approaches for
predicting the behaviour of discrete particles in turbulent flows. Prog. Energy
Combust. Sci. 25, 133–159.

Hesthaven, J., Warburton, T., 2008. Nodal Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applications. Springer, Berlin.

Hinze, J.O., 1975. Turbulence. McGraw-Hill, New York, NY.
Holtzer, G.L., Collins, L.R., 2002. Relationship between the intrinsic radial

distribution function for an isotropic field of particles and lower-dimensional
measurements. J. Fluid Mech. 459, 93–102.

Jaberi, F.A., 1998. Temperature fluctuations in particle-laden homogeneous
turbulent flows. Int. J. Heat Mass Transfer 41, 4081–4093.

Jaberi, F.A., Mashayek, F., 2000. Temperature decay in two-phase turbulent flows.
Int. J. Heat Mass Transfer 43, 993–1005.

Jacobs, G.B., 2003. Numerical simulation of two-phase turbulent compressible flows
with a multidomain spectral method. Ph.D. Thesis, University of Illinois at
Chicago, Chicago, IL.

Jacobs, G., 2008. Inertial particle behavior in a separated, turbulent flow. AIAA Paper
2008-1159.

Jacobs, G.B., Hesthaven, J.S., 2006. High-order nodal discontinuous Galerkin
particle-in-cell method on unstructured grids. J. Comput. Phys. 214, 96–121.

Jacobs, G.B., Kopriva, D.A., Mashayek, F., 2003. A comparison of outflow boundary
conditions for the multidomain staggered-grid spectral method. Numer. Heat
Transfer B 44, 225–251.

Jacobs, G.B., Kopriva, D.A., Mashayek, F., 2004a. Compressible subsonic particle-
laden flow over a square cylinder. J. Propul. Power 20, 353–359.

Jacobs, G.B., Kopriva, D.A., Mashayek, F., 2004b. Validation study of a multidomain
spectral element code for simulation of turbulent flows. AIAA Paper 2004-0659.

Jacobs, G.B., Kopriva, D.A., Mashayek, F., 2005a. A conservative isothermal wall
boundary condition for the compressible Navier–Stokes equations. J. Sci.
Comput. 30, 177–192.

Jacobs, G.B., Kopriva, D.A., Mashayek, F., 2005b. Validation study of a multidomain
spectral code for simulation of turbulent flows. AIAA J. 43, 1256–1264.

Jacobs, G., Lapenta, G., Hesthaven, J., 2006. Simulations of plasmas with a high-order
discontinuous Galerkin particle-in-cell solver. AIAA Paper 2006-1171.
Jacobs, G.B., Kopriva, D.A., Mashayek, F., 2007. Towards efficient tracking of inertial
particles with high-order multidomain methods. J. Comput. Appl. Math. 206,
392–408.

Karamanos, G.S., 1999. Large-eddy simulation using unstructured spectral/hp finite
elements. Ph.D. Thesis, Imperial College of Science and Technology, London, UK.

Karamanos, G.-S., Karniadakis, G.E., 2000. A spectral vanishing viscosity method for
large-eddy simulations. J. Comput. Phys. 163, 22–50.

Karniadakis, G.E., Sherwin, S.J., 1999. Spectral/hp Element Methods for CFD. Oxford
University Press, New York, NY.

Karniadakis, G.E.M., Sherwin, S., 2005. Spectral/hp Element Methods for
Computational Fluid Dynamics. Oxford University Press, New York, NY.

Kopriva, D.A., 1998. A staggered-grid multidomain spectral method for the
compressible Navier–Stokes equations. J. Comput. Phys. 244, 142–158.

Kuerten, J.G.M., 2006. Sub-grid modeling in particle-laden channel flow. Phys.
Fluids 18, 1207–1223.

Kuerten, J.G.M., Verman, A.W., 2005. Can turbophoresis be predicted by large-eddy
simulation? Phys. Fluids 17, 011701.

Kulick, J.D., Fessler, J.R., Eaton, J.K., 1994. Particle response and turbulence
modification in fully developed channel flow. J. Fluid Mech. 277, 109–134.

Le, H., Moin, P., 1994. Direct simulations of turbulent flow over a backward-facing
step. Department of Mechanical Engineering Report TF-58, Stanford University,
Stanford, CA.

Leboissetier, A., Okong’o, N., Bellan, J., 2005. Consistent large-eddy simulation of a
temporal mixing layer laden with evaporating drops. Part 2. A posteriori
modeling. J. Fluid Mech. 523, 37–78.

Lele, S.J., 1992. Compact finite difference schemes with spectral-like resolution. J.
Comput. Phys. 103, 16–42.

Levin, J.G., Iskandarani, M., Haidvogel, D.B., 1997. A spectral filtering procedure for
eddy-resolving simulations with a spectral element ocean model. J. Comput.
Phys. 137, 130–154.

Marchioli, C., Salvetti, M.V., Soldati, A., 2008. Some issues concerning large-eddy
simulation of inertial particle dispersion in turbulent bounded flows. Phys.
Fluids 20, 1–11.

Mashayek, F., 1998a. Direct numerical simulations of evaporating droplet
dispersion in forced low Mach number turbulence. Int. J. Heat Mass Transfer
41, 2601–2617.

Mashayek, F., 1998b. Droplet–turbulence interactions in low-Mach-number
homogeneous shear two-phase flows. J. Fluid Mech. 367, 163–203.

Mashayek, F., 1999. Simulations of reacting droplets dispersed in isotropic
turbulence. AIAA J. 37, 1420–1425.

Mashayek, F., 2000. Numerical investigation of reacting droplets in homogeneous
shear turbulence. J. Fluid Mech. 405, 1–36.

Mashayek, F., 2001. Velocity and temperature statistics in reacting droplet-laden
homogeneous shear turbulence. J. Propul. Power 17, 197–202. also appeared as
AIAA Paper 2000-0183.

Mashayek, F., Jacobs, G.B., 2001. Temperature-dependent reaction in droplet-laden
homogeneous turbulence. Numer. Heat Transfer A 39, 101–121.

Mashayek, F., Pandya, R.V.R., 2003. Analytical description of particle/droplet-laden
turbulent flows. Prog. Energy Combust. Sci. 29, 329–378.

Mashayek, F., Taulbee, D.B., 2002. Turbulent gas–solid flows. Part I. Direct
simulations and Reynolds stress closures. Numer. Heat Transfer B 41, 1–29.

Mashayek, F., Jaberi, F.A., Miller, R.S., Givi, P., 1997. Dispersion and polydispersity of
droplets in stationary isotropic turbulence. Int. J. Multiphase Flow 23, 337–355.

Maxey, M.R., Patel, B.K., 1997. Forced-coupled simulations of particle suspensions at
zero and finite Reynolds numbers. Center for Fluid Mechanics Report #97-2,
Brown University, Providence, RI.

Maxey, M.R., Patel, B.K., Wang, L., 1997. Simulations of dispersed turbulent
multiphase flow. Fluid Dyn. Res. 20, 143–156.

Michaelides, E.E., 1997. Review – the transient equation of motion for particles,
bubbles, and droplets. J. Fluid Eng. 119, 233–247.

Michaelides, E.E., Feng, Z.-G., 1994. Heat transfer from a rigid sphere in a
nonuniform flow and temperature field. Int. J. Heat Mass Transfer 37, 2069–
2076.

Michaelides, E.E., Feng, Z.-G., 1996. Analogies between the transient momentum
and energy equations of particles. Prog. Energy Combust. Sci 22, 147–162.

Minier, J.-P., Peirano, E., 2001. The pdf approach to turbulent polydispersed two-
phase flows. Phys. Rep. 352, 1–214.

Moin, P., Kim, J., 1982. Numerical investigation of turbulent channel flow. J. Fluid
Mech. 118, 341–377.

Moin, P., Squires, W.H.C.W., Lee, S., 1991. A dynamic subgrid-scale model for
compressible turbulence and scalar transport. Phys. Fluids A 3, 2746–2757.

Moser, R., Kim, J., Mansour, N.N., 1999. Direct numerical simulation of turbulent
channel flow up to Res ¼ 590. Phys. Fluids 11, 943–945.

Narayan, C., Lakehal, D., Botto, L., Soldati, A., 2003. Mechanisms of particle
deposition in a fully developed turbulent open channel flow. Phys. Fluids 15,
763–775.

Okong’o, N., Bellan, J., 2004. Consistent large-eddy simulation of a temporal mixing
layer laden with evaporating drops. Part 1. Direct numerical simulation,
formulation and a priori analysis. J. Fluid Mech. 499, 1–47.

Oseen, C.W., 1927. Uber die stokes’sche formel, und uber eine verwandte aufgabe in
der hydrodynamik. Hydromechanik 82, 21–29.

Ounis, H., Ahmadi, G., McLaughlin, J.B., 1991. Dispersion and deposition of Brownian
particles from point sources in a simulated turbulent channel flow. J. Colloid
Interf. Sci. 147, 233–250.

Pandya, R.V.R., Mashayek, F., 2003. Non-isothermal dispersed phase of particles in
turbulent flow. J. Fluid Mech. 475, 205–245.



826 K. Sengupta et al. / International Journal of Multiphase Flow 35 (2009) 811–826
Patera, A.T., 1984. A spectral element method for fluid dynamics – laminar flow in
channel expansion. J. Comput. Phys. 54, 468–488.

Pedinotti, S., Mariotti, G., Banerjee, S., 1992. Direct numerical simulation of particle
behavior in the wall region of turbulent flows in horizontal channels. Int. J.
Multiphase Flow 18, 927–941.

Pope, S.B., 2000. Turbulent Flows. Cambridge University Press, Cambridge.
Pope, S.B., 2004. Ten questions concerning the large-eddy simulation of turbulent

flows. New J. Phys. 6, 1–23.
Pozorski, J., Minier, J., 1998. On the Lagrangian turbulent dispersion models based

on the Langevin equation. Int. J. Multiphase Flow 24, 913–945.
Pozorski, J., Minier, J.P., 1999. Probability density function modeling of dispersed

two-phase turbulent flows. Phys. Rev. E 59, 855–863.
Prosperetti, A., Oguz, H.N., 2001. PHYSALIS: a new (o)(N) method for the numerical

simulation of disperse system: potential flow of spheres. J. Comput. Phys. 167,
196–216.

Ranz, W.E., Marshall, W.R., 1952. Evaporation from drops. Chem. Eng. Prog. 48, 141–
173.

Reade, W.C., Collins, L.R., 2000. A numerical study of the particle size distribution of
an aerosol undergoing turbulent coagulation. J. Fluid Mech. 415, 45–
64.

Riley, J.J., Patterson, G.S., 1974. Diffusion experiments with numerically integrated
isotropic turbulence. Phys. Fluids 17, 292–297.

Rogallo, R.S., 1981. Numerical experiments in homogeneous turbulence. NASA TM
81315.

Rouson, D.W.I., Eaton, J.K., 1994. Direct numerical simulation of particles interacting
with a turbulent channel flow. In: Sommerfeld, M. (Ed.), Proceedings of the 7th
Workshop on Two-Phase Flow Predictions, Erlangen, Germany.

Rouson, D.W.I., Eaton, J.K., 2001. On the preferential concentration of solid particles
in turbulent channel flow. J. Fluid Mech. 428, 149–169.

Rouson, D.W.I., Eaton, J.K., Abrahamson, S.D., 1997. A direct numerical simulation of
a particle-laden turbulent channel flow. Department of Mechanical Engineering
Report TSD-101, Stanford University, Stanford, CA.

Santhanam, S., Lele, S.K., Ferziger, J.H., 2003. A robust high-order compact method
for large-eddy simulation. J. Comput. Phys. 191, 392–419.

Sato, Y., Deutsch, E., Simonin, O., 1998. Direct numerical simulations of heat transfer
by solid particles suspended in homogeneous isotropic turbulence. Int. J. Heat
Fluid Flow 19, 187–192.

Sengupta, K., Russell, K., Minkowycz, W.J., Mashayek, F., 2005. Numerical simulation
data for assessment of particle-laden turbulent flow models. Int. J. Heat Mass
Transfer 48, 3035–3046.

Sengupta, K., Jacobs, G.B., Mashayek, F., 2007. Large-eddy simulation using a
discontinuous Galerkin spectral element method. AIAA Paper 07-0402.

Sengupta, K., Mashayek, F., Jacobs, G., 2008b. Direct simulation of turbulent flows
using spectral methods. AIAA Paper 2008-1450.

Sengupta, K., Jacobs, G.B., Mashayek, F., in press. Large-eddy simulation using a
spectral multi-domain method. Int. J. Numer. Meth. Fluids.

Shotorban, B., 2005. Modeling of subgrid-scale effects on particles in large-eddy
simulation of turbulent two-phase flows. Ph.D. Thesis, University of Illinois at
Chicago, Chicago, IL.

Shotorban, B., Balachandar, S., 2006. Particle concentration in homogeneous shear
turbulence simulated via Lagrangian and equilibrium Eulerian approaches.
Phys. Fluids, 18.

Shotorban, B., Mashayek, F., 2005a. Modeling of subgrid-scale effects on particles by
approximate deconvolution. Phys. Fluids 17.

Shotorban, B., Mashayek, F., 2005b. On stochastic modeling of heavy particle
dispersion in LES of two-phase turbulent flows. In: Proceedings of the IUTAM
Symposium on Computational Approaches to Disperse Multiphase Flow.
Kluwer, Dordrecht.
Shotorban, B., Mashayek, F., 2006. A stochastic model for particle motion in large-
eddy simulation. J. Turbul. 18, 1–13.

Shotorban, B., Mashayek, F., Pandya, R.V.R., 2003. Temperature statistics in particle-
laden turbulent homogeneous shear flow. Int. J. Multiphase Flow 29, 1333–
1353.

Shotorban, B., Afshari, A., Jaberi, F.A., Mashayek, F., 2004. A droplet-tracking
algorithm for les of two-phase flow. AIAA Paper 2004-0332.

Shotorban, B., Zhang, K.K.Q., Mashayek, F., 2007. Improvement of particle
concentration prediction in large-eddy simulation by defiltering. Int. J. Heat
Mass Transfer 50, 3728–3739.

Simonin, O., Deutsch, E., Minier, J.P., 1993. Eulerian prediction of the fluid/particle
correlated motion in turbulent two-phase flows. Appl. Sci. Res. 51, 275–283.

Squires, K.D., 1991. Dynamic subgrid scale modeling of compressible turbulence.
Annual Research Brief, Stanford University.

Squires, K.D., Eaton, J.K., 1990. Particle response and turbulence modification in
isotropic turbulence. Phys. Fluids 2, 1191–1203.

Squires, K.D., Eaton, J.K., 1991. Preferential concentration of particles by turbulence.
Phys. Fluids 3, 1169–1178.

Stolz, S., Adams, N.A., Kleiser, L., 2001. An approximate deconvolution for large-
eddy simulation with application to incompressible wall-bounded flows. Phys.
Fluids 13, 997.

Sundaram, S., Collins, L.R., 1997. Collision statistics in an isotropic particle-laden
turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335,
75–109.

Surana, A., Haller, G., 2008. Ghost manifolds in slow–fast systems, with applications
to unsteady fluid flow separation. Phys. D. Nonlinear Phenom. 237, 1507–1529.

Takagi, S., Oguz, H.N., Zhang, Z., Prosperetti, A., 2003. PHYSALIS: a new method for
particle simulation. Part ii: two-dimensional Navier Stokes flow around
cylinders. J. Comput. Phys. 187, 371–390.

Taulbee, D.B., Mashayek, F., Barré, C., 1999. Simulation and Reynolds stress
modeling of particle-laden turbulent shear flows. Int. J. Heat Fluid Flow 20,
368–373.

Tsuji, H., 1982. Counterflow diffusion flames. Prog. Energy Combust. Sci. 8, 93.
Vreman, A.W., Guerts, B.J., Kuerten, J., 1994. Direct and Large-Eddy Simulation I.

Kluwer Academic Publisher, The Netherlands.
Vreman, B., Guerts, B., Kuerten, H., 1995. Subgrid-modeling in LES of compressible

flow. Appl. Sci. Res. 54, 191–203.
Vreman, B., Guerts, B., Kuerten, H., 1997. Large-eddy simulation of turbulent mixing

layers. J. Fluid Mech. 339, 357–390.
Wang, L.-P., Maxey, M.R., 1993. Settling velocity and concentration distribution of

heavy particles in isotropic turbulence. J. Fluid Mech. 256, 27–68.
Wang, Q., Squires, K., 1996. Large eddy simulation of particle-laden turbulent

channel flow. Phys. Fluids 8, 1207–1223.
Weldon, M., Peacock, T., Jacobs, G., Helu, M., Haller, G., 2008. Experimental and

numerical investigation of the kinematic theory of unsteady separation. J. Fluid
Mech. 611, 1–11.

Wengle, H., Huppertz, A., Barwolff, G., Janke, G., 2001. The manipulated transitional
backward-facing step flow: an experimental and direct numerical simulation
investigation. Eur. J. Mech. B 20, 25–46.

Yeh, F., Lei, U., 1991a. On the motion of small particles in a homogeneous isotropic
turbulent flow. Phys. Fluids 3, 2571–2586.

Yeh, F., Lei, U., 1991b. On the motion of small particles in a homogeneous turbulent
shear flow. Phys. Fluids 3, 2758–2776.

Yoshizawa, A., 1986. Statistical theory for compressible turbulent shear flows, with
the application to subgrid modeling. Phys. Fluids 29, 2152–2164.

Zhang, K.K.Q., Shotorban, B., Minkowycz, W.J., Mashayek, F., 2006. A compact finite
difference method on staggered grid for Navier–Stokes flows. Int. J. Numer.
Meth. Fluids 52, 867–881.


	Spectral-based simulations of particle-laden turbulent flows
	Introduction
	High-order spectral methods
	Large-eddy simulations

	Governing equations
	Carrier phase
	LES formulation

	Dispersed phase
	Modeling subgrid scale effects on dispersed phase


	Homogeneous turbulence
	Carrier phase treated by DNS
	Carrier phase treated by LES

	Inhomogeneous turbulence
	Carrier phase treated by DNS
	Eulerian–Lagrangian method based on PSIC
	Particle-laden flow computations

	Carrier phase treated by LES
	LES of inhomogeneous shear flows


	Concluding remarks
	Acknowledgements
	References


